

HL7 based Real-Time Clinical Data Integration System Using Advanced Database
Technology

Sooyoung Yooa, Boyoung Kima, Heekyong Parka, Jinwook Choia, Jonghoon Chunb

aDept. of Biomedical Engineering, College of Medicine Seoul National University,
28 Yongon-Dong Chongro-Gu Seoul, Korea

bDivision of Computer, Myongji University, Young-In Kyonggido, Korea

Abstract

As information & communication technologies have
advanced, interest in mobile health care systems has grown.
In order to obtain information seamlessly from distributed
and fragmented clinical data from heterogeneous institutions,
we need solutions that integrate data. In this article, we
introduce a method for information integration based on
real-time message communication using trigger and
advanced database technologies. Messages were devised to
conform to HL7, a standard for electronic data exchange in
healthcare environments. The HL7 based system provides us
with an integrated environment in which we are able to
manage the complexities of medical data. We developed this
message communication interface to generate and parse HL7
messages automatically from the database point of view. We
discuss how easily real time data exchange is performed in
the clinical information system, given the requirement for
minimum loading of the database system.

Keywords:

HL7, Data Integration, Real-time System

Introduction

With the recent movement toward shared clinical data in
health care, a number of models, methods, and evaluative
strategies have been developed. Data integration, especially
in the medical environment, is the most important issue that
must be considered. In 2000, the Institute of Medicine
(IOM) in the United States reported that medical errors
result in as many as 98,000 deaths each year. This implies
that medical errors are the eighth leading cause of death in
the U.S., and that they nearly as high as those caused by
motor vehicle accidents (43,000), breast cancer (42,000) and
AIDS (17,000) combined [1]. The IOM reported that the
decentralized and fragmented status of the health delivery
system is the main cause of such medical errors.
The mission of biomedical informatics is to enable people to
use information to improve health care. The integration of
data from a variety of sources will also improve the clinical
decision making process [2].

This paper describes the design and implementation of real-
time clinical data integration from a viewpoint of database.
Also, an HL7 interface that is developed to solve the
problem of plug and play interoperability is discussed. HL7
(Health Level 7) has been proposed as a standard for

electronic data exchange in medical environment [3], to
understand data communication and system interoperability
among the various systems.

Background

Considerable research effort has been directed towards
acquiring integrated data, reducing redundancy, and merging
results in multiple devices including portable devices. In our
first stage multiple devices computing project (the LEX
project), we developed a clinical information system
composed of three parts: an interface for the multiple device,
a central data repository, and an HL7 message server.
According to this system, the HL7 message server retrieves
data from the hospital’s information system, such as basic
patient information and the clinical test results, and directs
the data to the central data repository in HL7 version 2.3.1
format [4]. We assume multiple device environment in
which clinicians will check the clinical data via multiple
device supporting interface. The implementation of HL7 is
essential in such a heterogeneous IT environment.
To fetch and store the patient data in the central data
repository, the data should be retrieved from the legacy
hospital information system regularly. Because a hospital
information system should be fault tolerant, the newly
induced system/application should not interfere with the
performance of the system. On finding new data in the
system, it generates a new HL7 message and attaches the
data in a second. In the LEX project, we adopted a polling
method to monitor the new data in the legacy hospital
information system. Because of the possible overhead to the
system, we set the monitoring interval to be no shorter than
one second.

In the second mobile clinical computing project
(MobileMedTM), we constructed a triggering function as a
stored procedure in the database, which ensures that
whenever changes to the database such as data insert or
delete or update occur, it transfers data to an external
application, the HL7 message server, in real-time. The
reason is that the polling overloads to the legacy system and
creates the possibility of a time delay. This paper details the
method for the communication between the laboratory
database and an external application.

Methods

Architecture for Real-Time Clinical Data Integration
We developed this prototype mobile clinical information
system called MobileMedTM, as an integrated health care
delivery system which gathers distributed and fragmented
patient clinical data into a central clinical repository that
allows healthcare providers to access a patient’s clinical data
using multiple devices (Figure 1). If test results from the
various kinds of LIS equipment including, blood, chemistry
and urinalysis test equipment stored in the LIS database at a
medical institution, this data is collected (or pushed) into the
central clinical database in real-time, and may be easily
accessed anywhere via available internet devices.

Figure 1: Overall Architecture of MobileMedTM System

The architecture of real-time data integration using the HL7
standard is shown in the Figure 2. We designed the HL7
Message Server (HMS) as an interface at each medical
institution and the HL7 Message Archiver (HMA) as an
interface for the central clinical database. These two
interfaces communicate with each other by HL7 messages,
currently version 2.3.1 messages, on the TCP/IP network.
Also, to minimize the database communication overheads
and the amount of data to be transmitted to the HMS, the
LIS database usually sends only small-sized data sets
including several key identifiers, to the HMS whenever
interesting transactions occur. The HMS queries again to
obtain complete data needed for fulfilling the HL7 messages
if necessary.

Figure 2: HL7 Message-based Standard Interface

Architecture

Sending Real-Time Data from LIS DBMS
Java’s safety and automatic memory management allows for
tight integration with the RDBMS. Thus, Java and RDBMS
support the rapid assembly of component-based, network-
centric applications that can evolve gracefully as business
needs change [5]. For this reason, many of the major
database vendors - Oracle, Informix, Sybase and IBM, are
supporting Java by embedding a Java Virtual Machine
(JVM) in their servers [6]. In this paper, we implemented our
system using Oracle 9i database technology. Given the
advantages of Java and database synergy, we leveraged Java

network programming into the database system to send data
from the DBMS to an external application.

Having used this technology to design the architecture of the
database components, we examined how to identify a
specific HL7 triggering event and how the identified event is
notified to the external application without creating database
overhead.

In our system, we needed to integrate real-time patient recent
lab test results data and service provider information into a
central clinical database. From the viewpoint of the database,
we were able to identify the triggering event (event R01)
served by the ORU (Observational report - Unsolicited)
message in combination with the ACK message using SQL
insert statement into a specific table (a recent lab results
table in the LIS database). Because the triggering event
occurs whenever an LIS equipment interface inserts newly
results into a recent lab results table (see Figure 3). Likewise,
the SQL insert, delete and update statements performed on a
staff/practitioner master table is represented as an M02
trigger event for which MFN (Master File Notification)
message exchanged in combination with an MFK (Master
File Application Acknowledgement) message.

Figure 3 shows the relationships between key tables of LIS
database.

Figure 3: Partial LIS Database Schema

And the embedded database modules are composed of a set
of Java stored procedures and database trigger, as can be
seen in Figure 4.
Java Stored procedures are Java methods published to SQL
and stored in databases for general use [5]. The reason we
imported a Java stored procedure is that Java is becoming
the stored procedure language of choice, promising
portability and safety. In addition, by using a portable stored
procedure language, code can be transferred between servers
from different vendors, vendor-specific training is reduced
and database-independent applications can be distributed
with application-specific stored procedure codes [6].

Figure 4: Architecture for transferring real-time data

The database triggers and stored procedures shown in Figure
4 functions as follows;

XML Wrapper: This is a Java stored procedure that returns
XML formatted ASCII text on the basis of the value of its
parameters. The reason we choose XML encoded
messaging for communications between DBMS and the
external applications is that XML provides a consistent,
language-independent interface for programmers while
providing full flexibility in determining the granularity and
consistency of the information as accessed.
Event Sender: To send real-time data from DBMS to an
external program, we implemented network programming
using a TCP socket in Java. This is a Java stored procedure
that sends an XML string received by its parameter to an
external program using an instance of socket upon the TCP
protocol. In addition, to assuring communication reliability
without any data loss or failure, we verified the successful
receipt or failure of the transmission by checking the
received acknowledgement. That is, if the socket connection
fails or doesn’t receive any acknowledgement, it inserts a
data failed to send into an event_log table, which is designed
to keep data temporarily until the connection is re-establish
successfully. To resend the data in the event_log table
without database load, we defined a new HL7 trigger event
“Z01” which is triggered only once to indicate that the
event_log table has more than one record. Using this trigger
event, we transferred only small-sized XML data
like ”<?xml version='1.0'?><doc event='Z01'></doc>” when
the network is available. We then expected the external
application to select and delete all records from the event_
log table after receiving Z01 events.
After insert trigger on recent lab results table: This trigger
is fired after a row is inserted into the recent lab results table.
Because a database trigger can invoke the Java stored
procedure, a triggered observation reporting event can be
notified to an external application using the previously
discussed XML wrapper and Event Sender procedures. That
is, just after encoding data elements in XML format using its
appropriate XML wrapper, we can easily send the encoded
XML data to external application by calling the Event Send
procedure.
After insert or update or delete trigger on staff/practitioner
master table: This trigger is fired after insert or update or
delete on our staff/practitioner master file. This trigger
notifies the occurrence of an event to an external application
using above XML wrapper and Event Sender procedure, as
explained before.

To minimize database communication overhead, we used the
following two methods to notify specific events in real-time.
First, If the trigger events cause frequent data
communications or the data elements for its HL7 message
are dispersed on several tables, with a complex relationship,
we transfer only key elements to identify each trigger event
from the DBMS. For example, Figure 5 shows the key data
tagged with XML attributes and elements including the
trigger event type, observation code, patient number, service
of battery code and specimen number. This XML document
is sent from the database, and then the receiving application

retrieves all the additional data it needs from the database. In
addition, using the database view approach, we could design
a receiving application logically independent of the database.
Second, If the trigger events occurs infrequently and the
triggered table has enough data for its HL7 message, with a
size of less than 1000 characters, all the data elements
required for the HL7 message can be transmitted without
database load. For example, when the master file notification
event are triggered, we sent the XML documents contain all
the information needed for the staff/practitioner master file
notification message.

Figure
5: DTD of XML document generated after insert trigger

on a recent lab results table

HL7 Message Server (HMS)
The HMS is the interface that automatically generates HL7
V2.X messages from the LIS database and exchanges
messages with the central clinical database. Figure 6 shows
the overall architecture of the HMS.
We designed two approaches for generating messages. One
is based on database query and the other is based on XML.
First, the database query approach is appropriate when the
HMS receives an event that contains only key identifying
information such as Figure 5, from database. In this case, a
database query is necessary to obtain the actual data needed
to fulfill a complete message like unsolicited observation
reporting message. At this time, the database query is issued
to views for HL7 messages as shown in Figure 5. We
defined views to make HMS independent of a specific
database schema. The second approach based on XML is
suited for master file notification messages, because the
event coming from the database contains all information
needed for this message.
For either of each message generation mechanism, additional
message segments can be added easily to address institution
specific requirements. Because message contents can be
different according to the view data or XML formatted data.

Figure 6: Architecture of the HL7 Message Server

HL7 Message Archiver (HMA)
The HMA is an interface on the central clinical data server
side that processes a large number of HL7 messages from
the HMS, and interacts with the central clinical database. It
is composed of two components, a message receiver and a
parser&mapper. To process large messages from
heterogeneous medical institutions, the receiver notifies the
events about incoming messages to the parser&mapper
using UDT protocol.

Figure 7: UI for monitoring the HMS

We implemented the HMS and the HMA using MS Visual
Basic 6.0 on a Windows 2000 Server. Figure 7 shows the
user interface used for monitoring HMS’s operation. Each of
the three sections of Figure 7 displays sent messages,
sending messages, received ack messages. Figure 8 shows
the two components of the HMA, receiver and
parser&mapper.

Figure 8: Receiver, Parser & Mapper of the HMA

Result

The described system is a prototype that has been developed
over 2 years from 2001. During this project, each of the six
kinds of the clinical laboratory test results - routine CBC,
blood coagulation test, chemistry test (I), chemistry test (II),
serology, routine urinalysis – were sent to the LIS database
from LIS equipment when it was generated. To share clinical
results with other institutions, the data in the LIS database is
gathered into CCDB using HL7 messages. Currently we
exchange with HL7 V2.3.1 message, however, the HL7
message version can be extended to any 2.X message.

Conclusions

In this paper, we present a mobile clinical information
system MobileMedTM, which integrates distributed patient
clinical data using a standard interface and advanced
database and information technologies. To achieve seamless
integration in real-time, we implemented a socket network
between DBMS and external applications using a Java stored
procedure.
This system represents the future of the health care system,
where patient clinical data can be easily shared among
authorized practitioners/institutions and easily accessed
anywhere via the internet.

In future work, we plan to solve the lack of interoperability
for information representation with unified ontology in
regard to having the same meaning in codes, vocabulary,
terminology, context, and other means of information
representation.

Acknowledgements

This study was supported by a grant of the Korea Health 21
R&D Project, Ministry of Health & Welfare, Republic of
Korea. (01-PJ1-PG4-01PT06-0002)

References
[1] RE Rouse, JS Charlson. The evolution of eHealth. Lehman

Brothers report, 2000
[2] W. Stead, R. Miller, M. Musen et. al. Integration and beyond.

JAMIA 2002. 135-145
[3] http://www.hl7.org
[4] Sooyoung Yoo, Boyoung Kim, Seungbin Han,

Youngchul Lee, Jinwook Choi, Jaeheon
 Cheong, Minkyung Lee, Jonghoon Chun. Automatic RIM (R
eference Information Model) Wrapper for LEX : Lifelong El
ectronic Health Record Based on XML. AMIA 2001.

[5] http://otn.orcle.com/
[6] http://www.firstsql.com/

Address for correspondence

Sooyoung Yoo, MS Candidate
Department of Biomedical Engineering, College of Medicine,
Seoul National University, 28 Yongon-Dong Chongro-Gu Seoul
110-799, Korea, E-mail: yoosoo0@snu.ac.kr

